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Abstract

Mie considerthe interconnection of two multiple-access/broadcast networks, each of

which connects a large population of bursty users via a packet-switched, random-access

channel. In each network a station, called bridge node, receives internetwork packets

from the local users .nd forwards the" to the bridge node of the destination network via

a point-to-point link; the bridge node of the destination network places these internetwork

packets in its queue for subsequent broadcasting to the local users. WVe--eatide two

ways of multiplexing the local traffic and the internetwork traffic: a) contention

multiplexing, b) channel division multiplexing. Under contention multiplexing, the

bridge node uses the same random-access channel that the local users use, and therefore

it participates in the contention. Under channel division multiplexing, the channel in

each of the two networks is subdivided into a node subchannel, used exclusively by the

bridge node, and a random-access channel, used by the local users. Assuming that the

input traffic in network i, 1-1,2, is Poisson with intensity X,, the stability region of

the interconnected system is defined as S - (X 1 ,2 ): the packet delay is finite with

probability one). We develop an analysis method for determining a subset of S, and we

give explicit results when the Stack random-access algorithm is used to resolve conflicts

at the local level.
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I. INTRODUCTION

Network interconnection is a necessity when we want to provide full connectivity

to geographically separated networks, but it can also be used to enhance performance

and reliability in a fully connected network by appropriately clustering its users into

self-contained interconnected subnetworks.

In this paper, we consider the interconnection of two multiple-access/broadcast

networks, each of which connects a large population of bursty users via a packet-

switched, random-access, broadcast channel. Both networks are assumed single-hop;

that is, a transmission from any one user can be-heard by all other- users In Sts

own network. However, no user in one network can hear the transmission of a user

in the other network. Internetwork communication is accomplished by means of a

point-to-point link, called bridg, link, connecting two stations, one in each network,

called bridse nodes. The function of a bridge node is twofold: a) It relays internet-

work traffic, (i.e., traffic generated in one network and destined to the other),

to the bridge node of the other network via the bridge link. b) It broadcasts

internetwork traffic received from the other bridge node to the users of its own

network, (local users). The setting is illustrated graphically in Figure 1, and can

be used to model several networking scenaria. For example, the bridge link might be

a satellite or a microwave link connecting widely separated local terrestrial packet-

radio networks, or a gateway connecting collocated local cable networks.

We will adopt the infinite population, Poisson user model for each of the two

networks. Users transmit messages in the form of fixed length packets. Packets

are generated by all users of network i, 1,2, according to an independent Poisson

process at a rate of X packets per unit time. Since the channel in each network

is shared, simultaneous transmissions result in packet collisions. Collided packets

are assumed destroyed and they have to be retransmitted at some later time. Packet

transmissionsand retransmissions are coordinated by a random-access algorithm (RAA)

(In this paper we will adopt the Stack algorithm, Ci, 2, 3, 43).
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A packet generated in network i, i-1,2, may be an intranetwork packet or an

internetwork packet. An intranetwork packet has a final destination in the network

in which it was generated. Therefore, an intranetwork packet leaves the system after

its first successful transmission (one hop). An internetwork packet generated in net-

work I(2) was a final destination in network 2(l). Therefore, such a packet leaves

the system only after it has been successfully transmitted in both networks. This

is accomplished in three hops, as follows. Upon successful transmission in the net-

work that generated it, (first hop), an internetwork packet is received by the local

bridge node, which, then, transmits it to the bridge node of the destination network

via the bridge link, (second hop). The bridge node of the destination network stores

the packet for subsequent broadcasting to local users; upon successful broadcasting,

(third hop), the packet leaves the system.

A bridge node must be able to distinguish between intranetwork and internetwork

packets, in order to know which packets to transmit over the bridge link. We will

assume that this information can be extracted from the addr.ss field in each packet.

Furthermore, since packets may arrive faster than they can be retransmitted, the

bridge node must contain enough buffer space in which packets are temporarily queued.

The queueing model of..a bridge node is illustrated in Figure 2. It consists of two

queues, referred to as the network queue and the link queue. The network queue

contains the packets that were received on the bridge link and are waiting to be

broadcast to the local users; the link queue contains the packets that were received

on the local random-access channel and are waiting to be transmitted on the bridge

link.

The volume of traffic that can be supported before the interconnected system

becomes dongested, and the delay that a packet experiences until it reaches its final

destination depend on how the available system resources (the two broadcast channels

and the bridge link channel), are allocated among the network users and the

bridge nodes.

-5.~.;* * . .~-'~ . . . ~ * ~ - . . * '~



For the bridge link channel we will assume that frequency or time division

multiplexing provides two way communication between the bridge nodes. Also, we will

assume that transmissions on the bridge link do not interfere with transmissions on

the broadcast channels.

In each of the two broadcast channels we have user transmissions originating from

the local users and coordinated by the underlying RAA, and node transmissions that are

broadcast from the bridge node to the local users. For the multiplexing of the user

and node traffic on the broadcast channel we will consider the following possibilities:

a) Contention Multiplexinz, b) Channel Division Hultiplexins. Under contention multiplex-

ing, the bridge node uses the same random-access channel that the local users use, and,

therefore, it participates in the contention. Under channel division multiplexing,

the channel is divided into a node subchannel, which is used exclusively for node

transmissions, and a random-access user subehannel, which is used for user transmissions;

the channel division may be done either in the frequency domain or in the time domain.

The flow of packets in the interconnected system is shown in a block diagram
form in Figure 3. The queues designated as 1 and 2 are distributed, and can

be thought of as abstract storage devices containing the packets that have been generated

iby various network users but have not been successfully transmitted yet. Queue Q is

the network queue of bridge node i,i-1,2. For simplicity in the analysis, the link

queues of the bridge nodes have been eliminated from the block diagram of Figure 3.

That is, we assume that packets experience no queueing delay at the transmitting end

of the bridge link. This assumption implies that for the link queue the service time

is less than the minimum interarrival time, which is true if the packet transmission

time in the bridge link is less than the packet transmission time in the local random-

access channel. The above assumption is not critical, since the system model with

the link queues included can be analyzed using the analysis techniques to be developed

for the model in Figure 3.
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Under contention multiplexing the interconnected system is a system of four

interacting queues with state-dependent service time distribution. Queuing problems

of this kind have been known to be hard to treat analytically. What makes things worse

1 2 1 2in our model is that queues PQ , Q are distributed, and that queues Q , Q have non-

independent nterarrival time processes with state-dependent distribution;.

Recognizing the analytical difficulties, we will only be concerned with the

determination of the region in the (X1 ,x2 ) plane in which the system is stable. The

syatem is called stable if the packet delay is finite with probability one. (A more..

precise stability definition for the system and its constituent queues will be given

in Section 11.3). The method of analysis uses an auxiliary system of queues that

dominates the given one, (in the sense defined in Section IU.D).

The stability analysis of the system under channel division multiplexing is less

difficult, since, by channel division, the four-queue system is decomposed into the

two tandem queue systems, (PQiLQ) and (DeQ1), which evolve independently of each

other.

The organization of the paper is as follows. Section I presents the stability

analysis of the system under contention multiplexing, for specific transmission

policies for the bridge nodes and the network users. The system with channel

division multiplexing is studied in Section III. Section IV provides some concluding

remarks. The paper ends with an Appendix which includes results used in the main

body of the paper; some of these results are of independent interest, since they are

applicable to more general contexts than that of multiple access communication networks.

II. CONTENTION MULTIPLEXING

A. Channel Model and Transmission Policies.

Under contention multiplexing, the bridge node and the users in each of the

two networks share a comon random-access channel. A simple channel model is considered.

The channel time is divided into slots of length equal to the packet transmission time,

which is taken as the unit of time. Slot n denotes the interval ln,n+l),n-0,1,2....



The bridge node and the users may initiate a packet transmission only at the beginning

of a slot. If more than one packet are transmitted within the same slot, then a

packet collision occurs. It is assumed that a collision results in complete loss of

the information included in all the involved packets; thus, retransmission is then

necessary. If only one packet Is transmitted in a slot, it is received with no errors,

and the transmission is said to be successful.

Regarding the interconnected system, we will make the following assumptions:

The system starts operating at time n-.O empty of packets. The packet transmission

time (slot size)is the same in both broadcast channels and the channels are slot

synchronized; that is, the interval [n,n+l),n-O,,2,..., corresponds to slot n in

both channels. The propagation delays in the bridge link and the broadcast channels,

and any processing delays at the bridge nodes and the users are zero. (The above

assumptions are not necessary, but allow us to avoid undue complication in the notation

and the statements of the results.)

Throughout the paper we will use the letter i as a superscript or subscript

to signify quantities that refer to network i, i1-,2. We will also use i', where

i'-1 if 1-2, and '-2 if i-l.

Let the packets generated in network i be indexed according to their time of

generation and define the random variable

1 1 if the &-th packet generated in network i is an
P C - internetwork packet

(0 otherwise

It will be assumed that the sequence {P)} is i.i.d., with Pr(P ml)p, and independent

of any other process in the system.

Next we specify the transmission policies for the bridge nodes and the users.

Transmission Policy for the Bridge Nodes

For bridge node I, define the i.i.d. discrete-time process (T n;n>} with

e -
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T ji with probability 7r,
n 0 with probability 1-7i

, and assume that (T ; n>l) is independent of any other process in the system.

At the beginning of each slot n, at which it transmitted a packet, the bridge

node i transmits a packet from its queue if and only if Ti-1.
n

We assume that by the end of a slot, in which it transmitted a packet, the bridge

node can determine whether the packet was successfully transmitted or collided with

local packets. A packet departs the queue if and only if it is successfully transmitted.

The probabilities wl, 12 are design parameters.

The packet priorities, i.e., the service discipline at the queue of a bridge

node, can be arbitrary but specified, although not necessarily the same for both

bridge nodes.

Transmission Policy for the Users

In each of the two networks users transmit their packets according to a RAA.

Among the plethora of RAAs that have been proposed for a single-hop environment,

we consider the n-ary Stack Algorithms (SA.), [1,2,3,41. We opted for this particular
'it

algorithm because of its simplicity and relatively high performance. The method of

analysis, however, can be applied to other popular RAA's, (e.g., Aloha-type algorithms,

Tree Search-type algorithms).

The SAn is a "limited feedback sensing" algorithm that uses binary feedback of

the "Collision-Non-Collision" (C-NC) type. A user monitors the channel activity for

acquisition of feedback information only while it has a packet to transmit (limited

feedback sensing); we assume that, at the end of each slot, a user that monitors the

channel can determine whether that slot contained a collision or not (C-CN). Note

that in the interconnected system, a collision may have been caused by a node trans-

mission.

Let Fi denote the binary feedback corresponding to slot n, of random-accessn

channel i. Accordingly, F-=NC, and Fi-C represent a non-collision and a collision
n n
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in slot n, respectively. The "limited feedback sensing" assumption implies that for

the transmission of a packet arrived during slot (n-i) no knowledge of the channel

feedback history, {Fkt; k<n), is necessary.

For the transmission of its packet t a user utilizes a counter, whose indication

at the beginning of slot n is denoted by I n(t), and it applies the following set of

rules that define the SA

1. For a packet t arrived during slot (n-1) the user sets I ( )=
Sn

2. Packet t is transmitted in slot n if and only if I ( )=0

iPacket t is successfully transmitted in slot n if and only if I (&)-O and

Fi -NC.

3. The updating of the counter indication I (t) is done as follows:
i. The

a) if Fi -NC and I (t)>0, then r n M -1n n n+1

b) if Fi -C and Ii () -0, then I L ( ) -ai(E), where Ui (E) is a randomn n n+f n+ ' n+1
variable uniformly distributed on {0,,...,n-l}, independent of any other

variable in the system, and n is a design parameter, K>2.

c) If Fi =C and Ii()>0, then In1 (0) 1 (&)+ n-n n n+l n

Under the SA the distributed queues PQ , i1-,2, in Figure 3 take the form of

the "stack" shown in Figure 4. The stack is an abstract storage device consisting of

an infinite number of cells, labelled 0,1,2.... At the beginning of each slot n

the J-th cellof stack i contains all packets such that I i(t) J; J0,l,2.
n

Packets are eventually successfully transmitted after moving through the cells of

the stack in accordance with the rules defined above. To resolve conflicts, the

algorithm splits uniformly the group of collided user packets in the first n cells

of the stack. The integer n is an algorithmic parameter, whose value may be chosen

* for performance optimization, [2].

* . . . .- . . . ,- . . , -.. -. .- , - ,. ., . .- .-
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B. Some Related Random Variables and a Markov Chain

Let us define the following random variables:

B M the number of packets in stack i,(i.e., in DQ ), at time n.n

Q . the number of packets in Q. at time n.

Hi - the number of packets generated by the users of network I during slot n.

n Is Poisson distributed with intensity X"

A1 1 if a packet enters queue i, 1-1,2, during slot n

nlo otherwise

Note that A nl if and only if the n-th slot of channel I is busy with a'successfuln

user transmission of an internetwork packet. Figure 5 is an illustration to aid in

the visualization of the random variables defined above; (node i, 1-1,2, represents the

i-th random-access channel; the links that are directed towards a node represent

transmission attempts, while the outgoing links represent successful transmissions.)

The variable B1 can be expressed as follows:n 
K t -1

n K-i

where Cn (J) denotes the number of packets in cell j of stack i at the beginning of

slot n; (K -1) denotes the highest indexed cell of stack I that is possibly non-

empty at the beginning of slot n. The integer K can be thought of as the position of
n

a conceptual pointer that moves through the cells of stack I according to the following

rules:

i 1K1

K n+1 max (Kl l) if F - NC

K -K i +n- if F -Cn+l n n

~ 4 4 ~ d ~ %* *%*~. . . . . . . . - V i- ~ - . r '. -
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Next define the random vector Zn n=0,1,2,..., as follows:

Zn 2 1 C 1 (K 1 )9( 2 (,.,C2(K2_), 1 2 n (1)zn  [ ,n (C (o),. n n n n 0)n -- )'n' n l ()

Z - [0, 0, (0), (0), 1, 1]0

From the description of the system, it can be seen that the process (Z ,n>O) is a
Xo+ + whr oN)istesto

Harkov chain with countable state space T= NoxN xGSxc N +xN, where N (9+) is the set of
0o 0 o0

non-negative (positive) integers, and e is the set of finite sequences of non-negative

integers; i.e.,

0 - ((klok 2 ,...,kM) : HiCN; k1 ,k 2 ,... kYNo }

The ergodicity of {Z,n>O} will be of concern, but first we will give a

precise definition of system stability.

C. Stability Definition and Stability Region

Let all packets generated in the system from the beginning of its operation be

indexed according to their time of generation. The delay, 6eof the t-th packet is

defined as the time from the moment of its generation until the moment of its

successful reception at its final destination. Our main interest will be in the

asymptotic behavior of the distribution function of 6, as well as that of the queue

i isizes B and Q n i-1,2. The asymptotic behavior will be described using the following

stability definitions, 15].

A sequence of proper (1) random variables X with distribution functions F
n n

is called:

(a) Stable, if X converges in distribution to a proper random variable.
n

(b) Substable, if there are proper distributions G, H, such that

G(x) < F (x) < H(x), for every n and x.

1. A random variable is proper if it has a proper distribution function.

A distribution function F is proper if lim F(x) = 1, as x--.

. . . .. . ., _, - -. , . . .. - -.- . .. ,.- . .. .' -'-' ,,. ' . ...4. ... ". ..... .4 ' .-.. ,,. ... . , ,.. - ", 
"
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(c) Unstable, if it is not substable.

It can be shown that the definition of substability is equivalent to the

following:

(b.l) The sequence Fn is relatively compact - i.e., each subsequence of Fn n

contains a stable sub-subsequence.

(b.2) lim F (x) - 1 , lim F (x) - 0, uniformly in n.

(b.3) lim lim inf F (x) 1 , lim I.v sup F (x) - 0

x-4- n-'-" x4-w n- -+

In the context of random-access networks, condition (b.3) has been used as

the definition of stability in [8); in the case of non-negative random variables it

takes the simpler form
lim hlm inf F (x) - 1

x-04- n- + t

The following properties will be useful in the sequel.

Property 1. A stable sequence is substable

SProperty 2. If X and Y are substable sequences, the sequence (X + Y )n n n n

is substable.

Property 3. Let Yn, Xn, Z be sequences of proper random variables with
n

distributions G , F , H , respectively. If Y , Z are substable and Gn (x)Fn (x)<Hn (x),

a. for every x and n, then Xn is substable.

The interconnected system will be called stable, substable, or unstable if

the induced packet delay process (If, t=1,2 .... } is stable, substable, or unstable

respectively. Similarly, a queue will be called stable, substable, or unstable

according to the behavior of the corresponding queue size process.

Our main problem will be to try to find simple conditions on the input rates XI

d
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and A'2 that will guarantee (sub) stability of the interconnected system, or of a

particular queue in the system. In particular, we will be interested in determining

the stability region of the system, which is defined as

S _ {(A 1 ,X2): lia li inE Pr(t<x) - 1) (2)

(If the system is stable, then we will write "li" instead of "lia n")

* D. The Dominant System

In this section we construct an auxiliary system, called dominant system,

to be used in the analysis of the real system. Network i, queue i, and stack I of the

dominant system will be referred to as dominant network i, dominant queue i, and

dominant stack i, respectively; also, a quantity X defined in the real system will

be denoted by X in the dominant system.

Except for the modifications in the transmission policies described below, the

dominant system coincides with the real system in all other respects. In particular,

the two systems have identical packet generation and routing patterns. That is,

a packet & is generated at instant t in dominant network i if and only if a packet

is generated at instant t in network i of the real system (packet & can be thought

-* of as the copy of packet &); also, packet & is an internetwork packet if and only if

packet & is an internetwork packet; that is,

*P , for every 6. (3)

Transmission Policy for the Bridge Nodes in the Dominant System

If &Q >0, then, as in the real system, bridge node i in the dominant systemI n

transmits a packet if and only if m l, where
n

T , for every n. (4)n n
Modification 1. If Qi -0, then bridge node i in the dominant system transmits a

fictitious packet if and only if -' - 1. A fictitious packet is not included inn
the number of packets in the dominant queue, and it is removed from the dominant

I.~ r * * *.~ . * - - .l* ~ ~ .' . , - * - a *
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queue upon arrival of an ordinary packet.

Transmission Policy for the Users in the Dominant System.

Except for the following modification, the transmission rules for local packets

in the dominant system are a repetition of the rules defined for the real system,

with Fn I W.~ U (g) replaced by Fn(C) U. I ), respectively, where

E~) LUM, for every n and ~n n
Modification 2. At the end of each slot n for which F - C and F - NC, the updating

n n

of the counter indication 1I() of a packet in dominant stack i is done.as follows:
n

a) If !'(Z) - 0, then I- where I-2 is an integer random variable

uniformly distributed on { -l, K,.., +n-2) Independent of any other variable
a n n

in the system; where K' is the position of the pointer in dominant stack i at
n

time a. (K is updated according to the rules defined for K1.)

b) If !i(&)*>0, then 1 i ( -- n+1 n

The rationale for the particular construction of the dominant system defined

above is the following. Modification 1 eliminates the dependency of a slot outcome

i iin network i on the state of the queue of bridge node i (Q -0 vs Q >0), and, there-

fore, makes the dominant system easier to analyze. However, to be able to relate

the dominant system to the real one, we need modification 2, it can be seen, after a

little (or a lot of) thought, that the following property is true.

Property A: If at time n, n-l,2,..., packet E is in cell J, (0<j<K i), of stack i,n

then, at time n, packet C -i.e., the copy of packet E- is in cell j of dominant stack i.

Property B: A packet & departs stack i either at the same time or before packet & departs

dominant .stack i.

The above properties are the key in proving the following proposition, which

specifies in what sense the constructed auxiliary system dominates the real system.

Proposition 1

Let (l,F,P) be the common probability space of all random variables defined so far.

. .. . ., .. ... ,. . ,,,...-..' ,.... ,,',,,,;. ,,, ._. ;
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The following inequalities are true for every wefl and every time n; n-1,2 ....

i( > C (J) ; 1-1,2; J.1,2,... (5)

Bi > Bi ; i-1,2 (6)
n- n

-1 -2 B 1  2 (7.a)SQn
f n - n Qn

-2 -1 2 1B n B n + (7.b)

Proof: Inequalities (5), (6) follow directly from property A. To prove (7.a) co.nsider

the two-queue system S1 ,(V1 2) in the real system (Figure 5), aid the corresponding

system 4 ,2) in the dominant system. Consider a packet C and its copy F,

and assume that 1 departs A during slot n. If is not an internetwork packet,

then, by (3) and property A, we have that packet departed system S1 during slot k,
l1

where k<n. If packet & is an internetwork packet, then it departs S 1 from 2. Define
2 -2

the variables A, and Aj as follows:

- if a packet departs Q2 (* 2 ) during slot j
Aj(A) " 0 otherwise

Note that A - T2 I(Cj(0) 0 0) I(Qi >0), and A2 = -iC i(0)= 0 ) I(Q > 0), where I(-)

is the indicator function of the event in the parenthesis. If Q>2 > 0, then, by (4)

-2 2 2
and (5), the event S2= 1 implies the event A2 . 1 1. If 2 . = 0, then by property B,

packet & departed Q2 during slot t, where t < n. Thus, we have shown that a packet

departure from system A1 either implies a simultaneous departure from S1. or that the1i

departing packet from S1 is a copy of a packet that has already departed S The

fact chat both system S1 and A have identical packet generation patterns completes

the proof of (7.a). The proof of (7.b) is the same.

E. Stability Analysis of the Dominant System

In this section we establish the conditions for substability of the queues in the

dominant system.

.,,,:-.' , . ~ 5 *1 ,.,,*.,,'-.I ,,,, ;',,,.. .-'*..' .' -vf . f *,:. ,. ... .. W'*.. . .. ... ... .. ... .. ,. ... . -,.. ,
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The Dominant Distributed Queue

We first consider Va.i, i.e., dominant stack i, and the queue-size process-i

in , n>l1 associated witn it. In contrast to the real system, in the dominant

system local transmissions are subject to bridge node interference represented by

the i.i.d. process W, n>l) which is independent of any other process in the

system, (modification 1). This property permits us to study the stability of

independently of any other component in the interconnected system.

Figure 6 shows i with its associated input M, queue size gn' bridge node
-i i

interference T, and output 0 variables during slot n. Note that, by construction,
n n

= for every n.
n n

The output 5' is defined as follows:
n

61 1 if slot n is busy with the successful user transmission.

n 10 otherwise

Note that 0 (1-f) I(C (0) -1), where I() is the indicator function of the eventn n n

in the parenthesis.

The subsystem of Figure 6 operates with the modified SAn in sessions. The

sessions are non-overlapping time intervals which partition- the slotted time axis of

channel i, and are defined as follows. Let

Rl ;Rk+Imin m : n > Ri, in -1, F - NC} , k> 1 (8)
N1k n nl

-i -The interval [. , ) defines the k-th session of channel i in the dominant

system. From (8) and the rules of the modified SAn and its associated pointer,

it is not difficult to see that at the instant just before the beginning of each

session dominant stack I is empty of packets. This observation leads to the following

properties:

%~ * *.. *' ,.~
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Property 1: Session lengths are i.i.d. random variables. This follows from the

fact that (! n; n>O) and fTt n>i) are i.L.d processes independent of each other and

of any other process In the system.

Remark: At first glance, it might seem that session lengths are dependent since

the operation of the modified SAn depends on the state of the real systemi (see

modification 2). However, this is not so, because modification 2 introduces, in

effect, a mere reordering of cells, which does not affect the independence of session

lengths.

Property 2: The user packets that were successfully transmitted during the k-th

session of channel i, are the packets that were generated during the interval

-1 -1

Let us nov define the following random variables.

-I1L. : the session length of the k-th session in channel i
-i
dk : the number of successful user transmissions during the k-th session of channel I.

Let, also

A s (o, E(s4)up{ (9)

where A, M E(M- )

By definition we have that Lk = + - ,and
kC-I

- -1 Lj

By property 1, {R i k>l) is a renewal process. We can now express the following

proposition regarding the stability of W.

Proposition 2. The process {B' n>l) is substable if X < A*

n n r i
Proof: Let Ws n>1) be the counting renewal process associated with.the renewal

process. {(I k>l}; that is,
Ri-i

n - max (k : < n)
n

Let also
Ai al i1 n>l

-1

. . . . . . . . , . . . . . ,, .. .,,.-,- .,. .- , .',, .'., ,',,",' n' ''.,_,,,'';'
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By definition, the process (An; n>l} is regenerative(2) with respect to the renewaln

process (Ri; k>l). Since for Xi  I we have that E(I)<- , it follows from the

regenerative theorem [7, Thm.21 that (An; n>l} is stable. Clearly, 0B40

for every n>1; thus, by property 3 of section II.C (in;n>l} is a substablq process.
_ n-

By property 2, we have that -

Lk

ak ,.F k-1,2,.... (10)

j= 1

Where denotes the number of packets generated in slot D+J-2. Note that -I

is a stopping time for (E; J.}, since the event { -mi is independent of

"-.+ -.+2 ".... If E(k)<s, or equivalently if Xi <X, then, taking expectations in

(10), and using Wald's theorem yields

E(Gj) - Aj E(Lj) , k-l,2,... (11)
-i drn h -hssincn:

The number of successful local transmissions, Gk, during the k-th session can

be thought of as a reward earned during the session. Note that d' depends on

but the pairs (L, G) k>l, are i.i.d.. Thus, by a well-known result from the

theory of renewal reward processes [9, Thm.3.6.1] we have that if X < X, then

-I
-1 n _i 1 - n 51 (G1)lir n E 0 lim n-  E(FO ) - -- XI  a.e. (12)

n..a. J-l o4= J-1 E(.,)

where the last equality in (12) follows from (11).

The Dominant Queue

Let us now consider the queue of bridge node I in the dominant system.

In reference to Figure 7, the arrival process i', n>l is the process of successful

2. A discrete-time process {X n;n>l} is said to be regenerative with respect to

the renewal process (Rk; k>l), if for every positive integer M and every sequence

il, ... im , with O<i 1<...<i, the joint distribution of X il.+Rk  , Xi +%
is Independent of k.

ei. .
_oL a c''tX:.- ..
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internetwork packet transmissions in network i'; that is, Ail, if a user packet
n

is successfully transmitted in network L' during slot n, (i.e., On -1), and packet

is an internetwork packet, (i.e., - 1); A 0, otherwise. The departure
n

process (n; n>l) is defined as follows:

n i ti p if dominant bridge node i successfully transmits a (real or
n =  fictitious) packet in slot n

otherwise

Recall that in the dominant system bridge node i transmits a (real or fictitious

packet in slot n if iT _1, and that its transmission is successful if no user packet
n

is transmitted in slot n, that is, if C n() 0. Thus,

Inth 1 -I(C (0) -0)

In the stability analysis ofQi we will make use of the fact that both channel

i and channel i operate with the modified SA, in sessionsof i.i.d. lengths. To

this end, let us define the following random variables.

Sk : the number of user internetwork packets that were successfully transmitted
during the k-th session of channel i.

Hk : the number of (real or fictitious) node packets that were successfully transmitted
k during the k-th session of channel i.

Note that, by construction of the dominant system and the session, the quadruples

(Lk. k. Sk, Hk), k>l, are i.i.d., and the sequence (Lk, Gk, S1, Hk), k>l, is independent

of the sequence (-, -2 -2 -2$iGk Sk H k), k>l.

Consider channel i and assume that X <X*. From (3) and (11) we have that
i i*

.(9i) . pilA E.(E.), k-1,2,... (13)

Also, by theorem 2 in [71, as in (10), we have that

- - . - - --i

-- - - -- * ,,, * ..J - -......



-18-

f n E(-
U-1 A.. Ee) P Ia a.e. (14)

nin i
n-11

lrn n1  l -i n1 E(~ Dj) m ~.ae. (15)
n1- j=1 n44-m J-1. E(L1)

where the last equality in (14) follows from (13). Let us define
-i

d E( ) (16)

We can now express the following theorem regarding the substability of

Theorem 1

The process Qi; n>l} is substable if
* *

pip , XA) . pi.i <d1  (17)

The proof of theorem 1 can be found in the Appendix.

Remarks:

1) In view of (14), (15), (16), and proposition 1, theorem 1 states that Qi

is substable if both i and Vi are substable and the (expected) long-run average

number of arrivals (piAiX.) is less than the (expected) long-run average number of

departures (d ).

2) The stability of queues with non-i.i.d. arrival and departure processes has

been studied by Loynes [5], (see also [61). These studies assume strict stationarity

of the arrival and departure processes. In our case, however, we cannot claim

stationarity or even asymptotic stationarity of the processes (Ai ; n>l} and (W_; n>l},
since the operation of the dominant system depends on the operation of the underlying

real system. Nevertheless, theorem 1 shows that simple "intuitive" stability criteria

can still be derived when the arrival and departure processes are associated with

renewal processes.
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F. Stability of the Real System.

In this section we combine the stability results for the dominant system with

the dominance relation, as expressed by proposition 1, to derive sufficient conditions

for the stability of the real system. We begin with the following theorems 0

Theorem 2

The processes (B ; n>l}, (B 2 ; n>l1, (Q1; n>l}, and (Q ; n>l) are substable if

XCX* , X2<2 PX <d2 X P22<d (18)

Proof:

By proposition 2 and theorem 1, processes (i; n>i} and (Q_; n>l), 1-l,2,
n -n

are substable. Thus, from property 2 of Section II.C we have that the processes

i -i A-(i + Qn , n>) . L-1,2, are substable. From proposition I we have that, for
n

every wcfl and every n, n>l,

O<Bi < -,=1,2,

-n- n

O<Q < Qn + B < Qn + B , i=1,2,
-n- n n - n n

The theorem follows from property 3 of Section II.C.

Theorem 2 has the following interesting corollary, whose proof can be found

in the Appendix.

Theorem 3

1 2 1 2
If (18) holds, then the processes (B nn>lJ,fBnn>ll,{Qnn>l},Qnn>1) are stable,

and the Harkov chain {Zn;n>O1,defined in (1), is ergodic.

Theorem "4

If (18) holds, then the system is stable; that is,

iim lim Pr( 6 t<x) - 1

where 6 is the delay of the L-th packet.

i... .- 1*

!€ ' £'£ .'L "-'. ' t.' " ., .- - . , ..- - .-- ".,"'.." ., '..,% ,-" , .',"".'
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Proof

Consider the Harkov chain {Z_;n>, and let T1,T 2 .... be the times of successive

visits to state 0, where 0 is the element [0,0,(0),(0),l,l] of the chain's state

space. (Note that Z0-0, by definition). By theorem 2, (Z_;n>O) is ergodic; therefore,

the process {O,T,T 2,...) is a renewal process with finite interrenewal time,

that is, E(Ti+1 -Ti) - E(TI)<a, I1-,2,.... Consider, now, the packet delay process

({;(t>l1 and observe that it is regenerative with respect to (0,T1,T2, ...

Since E(T )<4, it follows frcm [7, Thi. 2] that i6t;b>l is stable.

Let p x ((X1,X2) : A1l)1, X2'A2, p1X1 <d2, P2A2<d 1 . Clearly, 3 is a subset of

the system. stability region S. as defined in (2). To determine 3 we need to compute
* *

the quantities 1 ,) 2 ,dl, and d2, which, by definition, are functions of the system

parameters AlA 2 ,w,w 2 , and n; in particular A* - Xi(nW) and di - di(nwiAi)-

Given the system parameters, A1 and di are determined using only quantities that refer

to one session of the modified SA.; specifically, the expected session length, E(L1 ),

and the expected number of successful node-transmissions during a session, E(HR).

Since both the E(E') and the E(91) are not affected by modification 2 of Section II.B,

the analysis methods used in [2,3,4] for the original SAn can be used to compute

A and d Figure A shows Ai as a function of W for n-2 and n-3. Note that, for

Wi=0, is the throughput of the SA , (3]. Figure 9 gives the plots of d versus

Xi for n-2,3 and i=00.25,0.5, and 0.75. The stability subregion S, as determined by

the obtained values of A and di, is shown in Figures 10, and 11 for n-2,3, and

for different values of T1 , W2 p1 , and P2.

III. CHANNEL DIVISION MULTIPLEXING

Under channel division multiplexing, the available broadcast channel in each of

the two networks is divided into a note subchannel dedicated for node transmissions

and a random-access user subchannel dedicated for user transmissions. The channel
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The channel division may be done either in the frequency or in the time domain.

Under frequency division multiplexing (FDM), the available bandwidth W of

channel I is partitioned into a frequency band of width ai W , assigned to the nodeN

subchannel, and a frequency band of width W U , assigned to the user subchannel;vhere

i > 0i, i (19) -
UN_- O,% OQN+aU (

As long as its queue is non-empty, bridge node i transmits a packet (with probability

one) over the node subchannel. Since there is no multi-access interference and the

channel is assumed errorless, node transmissions are always successful. However,

the packet transmission time and, therefore, the service time of Q , is no l/.

units of time. The random-access user subchannel is shared by the users in accordance

with the SAN described in Section II.A; the packet transmission time, and, therefore,

the channel's slot size is now 1/a I units of time.

Under time division multiplexing (TD), time is divided into successive periods

called frames. Each frame contains H unit time successive slots, Ki of which

are assigned to bridge node I and i- K are assigned to the local users; where

K - 1-K/H' - a, and 0 < K <HM. The distribution of the K node slots

and the - 1 user slots over the time frame can be arbitrary, but fixed. If its

queue is non-empty, bridge node I transmits a packet (with probability one) in the

first available node slot. Successive user slots form a interleaved random-access

channel which is shared by the local users in accordance with the SAn -

The stability analysis of the interconnected system, under either FDH or TDM,

1 1 2 2 2 1is simplified by the fact that the two tandem subsystems S (DQ , Q) and S - (DQ Q )
* i

evolve independently in time, once the fractions Ot U , 1-1,2, have been fixed.

The stability of system Si depends on whether both its constituent queues are

stable or not. Consider first D0Q. From f2,3], we have that the SA n, induces finite

expected packet delays if and only if Ai < i. where A1 is the throughput of the SAn

. . .. . I V
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In packets per unit time; (1,-0.360 for n-2, 1,-0.401 for n-3). In our case,

the random-access user subchannel occupies a fraction CiL of the overall channel;

thus, the SA throughput is I X and, therefore, PQ is stable if
n CU i

Ai<c I Xi (20)

If V Q is stable, then the arrival rate to Q is pii; also, the service time
AA

of Q is equal to l/ •N For the stability of Q it will be required that

i"p .x < 1. (21)

The following theorem combines (20) with (21) to give a sufficient condition

for system stability.

Theorem 5

The system is stable if

A < I- < ~2 < 2 X< C1 (22)
1 % 1 '2 CU 2 'l 1 CN P22 N

The proof of theorem 5 is based on the same ideas used in the proofs of

theorem 1 and 3, and, therefore, it is omitted.

*. In contrast to contention multiplexing, for channel division multiplexing the

stability subregion 9 A= { A 2): (22) is satisfied } is always a rectangle in the

(Xl,A 2) plane. Given X1,A2, pl 'P2, and the algorithm parameter t, the channel

i i
division parameters 'U , a i, i1-,2, should be chosen so that (19) and (22) are satisfied

(if possible). The best choice for n is n-3, since it results in the highest SAn

throughput (Xi - 0.401), and uniformly better expected packet delay characteristics
i,i i

[2]. The choice of 'U.'a N depends on the traffic parameters A1, A2' p1 and P2. For

example, in the symretric case, where A 2 Pl ' P2 p  ' X X'

the largest set of A's satisfying (22) is obtained if we choose
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1i ~12. 1 2 1 (3
'N M LN .' aU =aU p(23)

In this case, the system is stable if

pX+l

where X-0.401, and O<p~l.

IV. CONCLUDING REMARKCS

In this paper we have given sufficient conditions for the stability of a system

4 f interacting queues that models the interconnection of two random-access broadcast

channels. The stability analysis of the system with contention multiplexing has been

based on the stability analysis of a dominant system, which is analytically more

* tractable than the original system and its stability guarantees the stability of the

original system. The dominant system technique is quite useful in studying the

stability of systems with multiple interacting queues and has been used in several

recent studies [8,10,11,12]. In studying the stability of the bridge node queues, we

have shown that simple intuitive stability criteria can be rigorously established

when the arrival and departure processes are associated with renewal processes.

The system presented here may be extended to include more than two networks, and

*it may be modified to operate under different RMA's and channel models, (e.g., carrier

sensing). The analysis of this paper provides a framework for the study of such extension

and modifications.

Finally, we note that, since the derived stability conditions are only sufficient,

we have avoided making performance comparisons between the system with contention

multiplexing and the system with channel division multiplexing. In general, however,

the obtained stability subregions for the two systems are comparable. Which multiplexing

* technique is best for given traffic requirements and delay constraints can be determined

only if we knew the packet delay distributions. One step towards this direction would

be the determination of the first few moments of the packet delay; the delay analysis

method developed in [141 could be useful in this respect.
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APPENDIX

PROOF OF THEOREM 1

We will present the proof for i-1, the proof for i-2 is the same.

The difficulty in pro..ag theorem 1 lies in the fact that the operation of the

dominant system depends on the original system, and, therefore, we cannot claim

-1
stationarity or even asymptotic stationarity of the processes {An ; >1

{D2 ; n>1. Nevertheless, the following equalities are true:
n

-2 2 _ 52 -l 2 52 + (A.1),," ~Q-lmaxQ (  D ,'o)4- + nmax (Q ,D) +C: A
U1n a n n n n

where C - -52
n n n

It can be shown by induction, from (A.1), that

-2 - ax -2 +-1 - -1
Q max (cn + Q Cn + A1,... , c + A1 (A.2)ns lo* 2nm m_l , ... 9

n
where c C

j-m
By definition, the following equalities hold (3) u2

n-2
ff 2 n-5 (A.3)

N n n=- n n= n

n ni -i +-i

where un N + Ei i, i-1,2, and N is the counting renewal process defined in the
n n N n

n
proof of proposition 2.

From (A.3) we conclude that
j1 N2_i
R n n 52 n (A.4)E= m <- E. Sk E j -- Ek

jm- j=m k2+
m m

• 3. In formulae (A.3), (A.4) we adopt the notation

S k k
0  if i>j

k=i

~~~..........,................. .....-. ,............. .... ........-.- :'.,-..
•** ~ ~ * . . ,..,.,,.. ,-. .*.. . - s . - , ." "
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From (A.2), (A.4), and the fact that Al1, and &2>1, we obtain

-2 -2

n+l <  + Q +1 n>l (A.5)

where ji R2+1n n

9n - max (max ( K 5k -
;:l~m<n 1-

--- k-NR k-N 2 +1
m m

Wewl hwthat the poes{@n;n>l} is stable. The substability of (Q ; n>l}

-2

will then follow from (A.5), and properties 1,2, 
and 3 of Section II.C, since &2

Is a proper random variable; (in fact, if we assume that the system is initially empty,

-2

To prove the stability of (0 ;n>1} we need some preliinary results. First,

a strengthening of Theorem 4.3 in [151. We will consider the discrete case, since

this is of interest to us.

Let (xk(nw),Xk(w)), k-+l, +2, +3,... be i.i.d. random pairs defined on some

probability space (,F,P). For every k,Xk(-), is nonnegative, proper and integer

valued, while xk(n,') is a sequence of proper random variables (or vectors). Define:

S1-o

k-l
Sk,= Xi  ; k>2

i-l
k

Nn-max(k: Skin ) min(k: Xi>n) ; n>l
i=1

z -n-S n>l
n

vn=xN (z) ; n>l

Note that, by definition, the process {v n >l} is regenerative with respect to the

renewal process {Sk; k>l}. zn Is called the "current life" of the process {Xk}.

Let ((x0 (n,w), X0(w)), z0(w)) be a random triplet defined on (SF,P), which

is independent of (xk(nw),Xk(w)), k-+l,+2,+3,..., and define

*, ,*,,i. .. *..._p....... .*.., .... ,.... . ,/ ,.. .. ,. .,. **..,,.,*.'.,;..',', -.... ' '., ",
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k-1k

S k z + , Xi ; k>O

i-o ;k

k
S k a -z0 - i _l ; k>O

N =max(k: S <n) ; neZ

- n S.; ncZ
n n

n

V n xN* (zn)
n

Let E(X1 )<, and let the distribution of X be aperiodic. Then, if the triplet

zo(u)) is appropriately constructed, it is shown in [15] that the

resulting process fv ; nCZ} is strictly stationary and that

n-l~ PVnki<a I ;t,.,)= P(Vki_ at ;tl,..., M) ;ktc --,

n- i

Let now, (vn} be the sequence (vn,Vn+l,...., Vn+k,... and ( } be the sequence
v* * *
(V V ,...,V k...}. We will show that

lim P({v I c BO) - P(fv* e B O)
fro n 0

uniformly over all measurable subsets Bc of R , where Re is the space of all two-

sided real sequences.

We first need the following lemma, which is a special case of. Scheffe's

Theorem [13,Appendix Ill.

Lemma A.l
Let p O i " 1, lim pn ; i>O, n>l. Then

n I.o n 1...... . - - . .,.- ._ .,.:li...m.' ;.... -. % ,- , , -, , , , ,.

JJ 'le '. .. ," ,.dN.; ,_ .. .t - % a. ,'O .ii i''' '' - ' i
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The above iea has the following corollary:

Corollary A.l

Let the conditions of Leima A.1 hold. Let N be a set of indices, and for Vye,

let c , i>0, be a sequence of reals, such that jC J< r'<4, for every 1>O ind

yEN. Then,

lim c p1  - c w , uniformly in V
U4- L-0 in 1-0 -

Proof: By Lea A.l, we have

, P., -E I < r 'i 1 0. uniformlyLi 1-0 i-o

We can nov express the following theorem:

Theorem A.1

Let E(X,)<- and X be aperiodic. Then,

liz P((v I C B ) - P((v* CB
n~o 0

uniformly over all measurable subsets B of R

Proof: As in [151,

P((v n) £ B1 zi-) - P({vO)C BI0 z- i)

Also, because of aperiodicity,

P(z ni) - P(z 0 -i)

By the total probability theorem we have

P((v 1 B) - P(fv n C BOzn-i) P(z n-i)

n .
P(fV*) c B) - F, P({v1 *£ B 1z*M i) P(z 6-i)

.. . . . . . . ..~ '5' . . . . . . . . . .,..-.. . .,... ,... ',,...1

'. -,.......: -,.-0 -. >.,". 0'._ 0..: ...... ''.: ''4,.' ,, :..,;,% '' - , -, .,,. . , i T. .. ..
' ' ldr 3 lh aF ~1- t ~ad l did
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The theorem now follows from corollary A.1, by identifying

P wV with P(zni), Wi with P(z *i), and c Vwith P((v01 * B -i); (the index set N

corresponds to the Borel sigma field associated with 1r).

In the proof of theorem 2, we will also need the following Lemmas.

Lema A.2

Let (11F) (flF*) be measurable spaces, and let Xn• X Y n , Y be measurable mappings

from Q to fl'. Let P be a probability measure on (1,F). If

a) {X n>l} is independent of {Y ;n>l}, and X is independent of Y

b) lia P(Xn C ) P(X* c B ), uniformly in B eFV

c) lii P(Yn e B) - P(Y* C B), uniformly in B C FO

then, li P((X n, Yn) C C) - P((X , Y ) £ C), unformly over all measurable sets C

of the product space (11'x Q', F'xF").

Proof: Let BcF', and define Phi(B) - P(Xn C B),Pn2(B) =P(Yn £ B),

P1 (B) - P(X* e B), P2 (B) - P(Y e B); Ph Pn2' P2 are probability measures on

S (0%VF).

Let C c FoxF, and Pno' P be the product measures on (1"x', F'xF") induced by
no 0

(P nl' Pn2) and (P1 , P2), respectively. Let also

C(W1) - (W 2 E : (wl, W2) C C)

C(W 2) - (W1 £ : (W1 W 2) £ C}

Then, by Fubini's theorem, we have

P ((X ,Y ) C C) P no(C) f n (C(WI)) Pnl (dw =no n n no Pn2 I

= Pn2((P ( -P2(C(wl)) Pn(dw ) + P(C(wl)) Pn(dwl) (A.6)

n2,1-2,.,.,-1 f..,(.,..-. ".. .

*. . .
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P((X*. Y ) e C) -P (C) PI (C(w2 )) P2 (dw2)

- j ( ( C ( W 2 ) P 1  ( C (W ) ) + J P 1 ( w ) ) ' 2(A 7

Also, f (C(w ) / f I "(
Jf t 2 2 (c(w1)) P 1 (4 1 ) (A.)
Q.0 n1"

From (A.6), (A.7), and (A.8) we obtain

I P ((X , Yn) C C) - P((x* Y) C c)l -a n
" f (P 2 (c(w)) - 2 (C(w ))) Pnl (dwl) -

-f (P1 (C(W2)) -Put (C(w2))) P; (dw 2)1
! a-

_< IP(Yn C C(W1)) - P(Y* C C(W1))I Put(dw 1 +

+ f IP(Xn C C(W2)) - P(X* C C(W2))r P(dw2 ) (A.9)

By hypothesis, for every C>O there exists N(C), such that

IP(x C C(W2)) - P(X* C C(W2))1 < e/2 (A.10)

for every C(w 2) and n > N(c).

(Y £ C(W 1))-P(Y* C C(W))I > £/2 (A.11)

for every C(w1) and n > N(C).

From (A.9), (A.10), and (A.11), we obtain

I P((X n Y n) £ C)- P((X*, Y ) C C)I _<

for every C c F'xF' and n > N(E), and the proof is complete.

-' ~ %*.*'~ ~0
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Lema A.3

Let Yn be a random variable defined on a probability space (flF,P) for each n>Oa

and m< n. If

li- sup Yn < 0 , for every m, (A.12)U
n+m ao

then, for every N, the following are true:

a) For every measurable set B of the induced probability space

hi- inf P(max(max(Y.n), 0) C B) - lim inf P(max(max(Yn), 0) £ B)
no <m<n n- t<m< n'

b) The same equality holds with "ha- inf" replaced by "Ila sup".

* Proof: Let

*I "----, on) 0) ; i<n
i~m~n u

By (A.12), for each wel, there exists an integer M(w), such that Yn(w)<O, for every

n and m, such that n>M(w) and 1<m<N. Therefore,

1 (w). "(W), n>(w) (A.13)

Since M(w) is a proper random variable, using (A.13) we have

1 n N 1
P(* n cB)= EP(O nCB, M-k)+ E P(# C B, M-k)

k-l k-n+l

or

1 N N1
£ c B) - P(" n B) - n P(* £ B, -k) +: P(O n B, .k) (A.14)

k-n+l k-n+l

Since M(w) is proper,

0 < 1 P(O C B, K'k) < P(M>n) - 0 ; i-1, N (A.15)
k-n+l n'4=

In view of (A.15), taking appropriate limits in both sides of (A.14) proves the lemma.

Lemma A.4

Let {X ; nCZ), {Y ; ncZ) be stationary random processes independent of each other,
n n

and defined on the same probability space (SI,F,P) . Then,

- * . . . . . . . . . . o . ..- op•jm.- • q - •.•.- ••
•
•
o

• " .j s " ' i
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P([(xx +l,...,X,, 1-), (Ykyk+1, ...,yk+,,2-1 ) C B) B

- P((X,+ IX+ +, ...,X n +,0_1). (Yk+,,2' .2+'.. Y k+n2+012_)] C B)

for every n.k.ml,m2,nn 2 C Z, and every measurable set B in the induced probability

space.

Proof: It is easy to see that the lemma holds if B is a finite disjoint union of

measurable rectangles. An application of the monotone class theorem [16, Thm. 1.3.93

completes the proof.

We are now ready to show the stability of the process 9 defined in (A.5).
n 1 *2nlb h

To put the problem in the franevork of regenerative processes, let 2 '2, >ln , be the

1 -2
current lives of the session length processes (Lk ; I> } , {L ; k>l}, respectively.

Define

n

0 Otherwise

R2 Nj2 if Rj
n n n

0 Otherwise

Then, RI

n n

k-R' k

a
and -2

and N+l n-z
-2 n 2

', -2+
k-N9 +1 ir

m

The processes [((i, n) ; n>l) , { '2, n) ; n>l) are regenerative with respect

n n - n n i

to the renewal processes ; k>l) ,{2 ; k>l), respectively. The interreneval times,

i.e., the session lengths L,.' L ,are aperiodic random variables. Furthermore, if
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X<  -1,2, then E(L )<, 1-1,2. Therefore, there exist stationary versions

{((j*, (Sl)*) ; n>l) , (((j2. (R2)*) ; n>l) of the processes ((ftl, Sl) ; noil
n nn n n

- ,f 2 ) ," n>l}, respectively. Note that the above stationary versions are
n n

Independent of each other, since the original processes are independent of'each

other.

From the regenerative theorem [7, Thm. 2], ye have that

i " P1 A1  a.e. (4.16)
n i-I E(L1)

,i I i "d a.e. (A.17)
1-1 E(L1)

where the last equalities in (A.16) and (A.17) follow from (14) and (16), respectively.

It follow from (A.16) that, for every fixed a,

un 1 1 1  a.e. (A.18)

Using standard renewal theory arguments it can be easily shown that

lii 1 .2 -o a.e. (A.19)

From (A.17), (A.19) we have that
-2 -2

n-z n-12 n-z n

R2 n ln 2 1 ir n 2 d 2  (A.20)
n-,- im L n4n-i 2 i-Mn

n-Z
Define - n n y n Sl 2 (A. 21)

M " l I2 i- E , i

From (A.18), (A.20) and (17), we conclude that, for every m,

I yn . p A -d 2 
< 0 (A.22)lnr n a 11 2

A: a:... -, ., . ... .. ., : . *,.* ' , ,
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From (A.22) and lemma A.3, we conclude, that, for every N and x,

i niLf P($n < x) - lir inf P(max(max Y , 0) < x) (A.23)
&N n-1-4-N <m<n

where 0 is as defined in (A.5) and yn is as defined in (A.21).

n a

By theorem A.l and 1-na A.2, we have that for any C>O there exists N0(C),

such that, for every N>N0 (c) and every n,

Ip(max(-ax Yn, 0) _1) - P(Max((max Yn) ,o)< x), < C (A.24)

N<a<n N<m<n

where (max Y ) is the stationary version of (max Y) ; that is,

N~u~nN<rn<n

(max yn)* max E n-(N-1)() (A.25)

N<a<n l<.n<n-(N-l) (5)* i-

(In (A.24) we have used the fact that ( 1)* is a proper random variable). Note that

, the C in (A.24) does not depend on n, since the convergence in theorem A.1 is uniform.

Thus, from (A.23), (A.24), and (A.25) we conclude that

lim inf P(On < x) - lim inf P(max(max(Yn) n 0) S x) (A.26)

"- -4-l<m<n

where

in n wi) 2)
i'mm-(zM) i-m

Using lemma A.4 and the methodology of theorem 2 in [6,631, it can be shown that

4n

I i P (max(max (yQ , 0) <x) P(Y_ < x) (A.27)
n 1<m<n

where 2*
0 *0 -2

k>o i--k-(i -k) i--k

.4-S -
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By the regenerative theorem we have that

-2*
S_ (R2 )*k-U k A lkm )*(- E i) A) d2 (A.28)k4-i- k --k)'  kP04-0 ; -k

From (A.28) and the inequality p Xl -d2 < 0 we conclude that

0 -(12 )*2*

Ii. ( m-- a.e. (A.29)

i=-k-(zk) 1=-k

By (A.29) Y. is proper. Therefore, from (A.26) and (A.27), we conclude that the process

{% ; n > 11 is stable. The proof of the theorem is now complete.

* PROOF OF THEORDI 3

1 1 2Q n have limiting distributions as n*4w, since they are measurable

functions of Zn, and (Zn;n>O} is an irreducible and aperiodic Markov chain. Hence,

by theorem 2, the processes { 2 ; n>l), (B1; n>11, and (B2; n>l) are stable.
1 -- l adn - n - n le

Consider now the pointer position process (i; n>l in the dominant stack i.
--

Since iK is not affected by modification 2 in the algorithm, (Kn; n>1} is regenerativen n

with respect to the underlying renewal process W I k>l. Thus, for X <j

n>l} is stable. By construction, KI a.e. for every n>; therefore K;. n>11
n n n- n ee o ,r _l hrfr ,l

is substable, and since K is a measurable function of Zn, it is stable.nn
To show the ergodicity of {Zn; n>O} we use the idea used in the proof of Theorem 1

- in [81. From the stability of the processes involved we have that for any c>O there

exists an x>O such that

imPr(Qnt > x) < c/6 , 1-1,2 (A.30.a)

n n

Xim Pr(Kn • x) < £/6 , 1'1,2 (A.30.c)

n-wH

Nowe, using (A.30), we have
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ha Pr(( 1 <x)n (Q <x) n (B 1x)n(2 <X) {K x<)1(K <x)) -
jon n n n n

l iU Pr((Q >x U (Q; >x) U(B n >x}U (Bn >x}U V {K >x) U (K2n >x})
n44-

* -i. (Pr( >x) + Pr (B >x) + Pr(K >x)) > 1-C (A. 31)

It is known that if {Z n n>O) is not an ergodic chain, then for any finite subset

" V of the chain-: state space we have Pr(Z C V) * 0 as n4m. Hence, by (A.31),
* n

n(zn ;n>O) Is an ergodic chain.

Lq~ l ,- . . . ,. , ., ,% " ,% ,* -"% ,
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